skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "David Paulius, Nicholas Eales"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To represent motions from a mechanical point of view, this paper explores motion embedding using the motion taxonomy. With this taxonomy, manipulations can be described and represented as binary strings called motion codes. Motion codes capture mechanical properties, such as contact type and trajectory, that should be used to define suitable distance metrics between motions or loss functions for deep learning and rein- forcement learning. Motion codes can also be used to consolidate aliases or cluster motion types that share similar properties. Using existing data sets as a reference, we discuss how motion codes can be created and assigned to actions that are commonly seen in activities of daily living based on intuition as well as real data. Motion codes are compared to vectors from pre-trained Word2Vec models, and we show that motion codes maintain distances that closely match the reality of manipulation. 
    more » « less